This self-evaluation “Scorecard” is intended to guide the proposed tourism project representative requesting funding in order that (a) the whole range of practices, from best to counterindicated, will be taken into account for the design, construction, and operation of the tourism project, and so that (b) the Inter-American Development Bank (IDB) may understand which aspects of the tourism project are excellent, acceptable, or unacceptable before considering it for financial assessment. A project whose Scorecard has items marked in red is unacceptable for such consideration, and one having items marked in orange must be carefully analyzed by the IDB.

It should be pointed out that the intention is for the project entity requesting funding to complete the form in private as often as necessary, and that each time corrective measures are to be taken to eliminate unacceptable aspects in the project design before submitting the project, along with the Scorecard, to the IDB. This will ensure, both for the project representative requesting funding as well as for the IDB, that the project will be environmentally and socially sustainable. The Scorecard results, once submitted to the IDB, will constitute a commitment on the part of the developer, one which will be subject to verification by the IDB.

Contents

1. Introduction and objectives 2
2. Basic principles 3
3. Structure 3
4. Use of the Scorecard by tourism project developers and the IDB 4
5. Detailed guide to using the Scorecard 5

Glossary

Bibliography and References 25

1. Introduction and objectives

Tourism is an increasingly important source of income and employment in Latin America and the Caribbean, with an estimated contribution to the region’s GDP of US$ 217 billion in 2009. There is little dispute as to the complexity of tourism as a phenomenon, as well as its not always desirable impact, but its potential to contribute to development and relieve poverty is widely recognized, and it merits being carried out as an industry.
The Inter-American Development Bank (IDB) has been approached by project developers interested in financing for private tourism project construction and operations throughout Latin America and the Caribbean, in a range of areas including beaches, forests, and cities. Given the potential of such projects to both promote sustainable development but also to generate negative impacts on the environment and local communities, the IDB needs to ensure that those projects which it decides to finance promote sustainable development, maximizing benefits for the environment and local community and minimizing negative impacts as much as possible.

The objective of the Inter-American Development Bank (IDB) Scorecard for Private Sector Tourism Projects is threefold:

- The scorecard allows the Bank to assess the sustainability issues of the projects that request IDB financing
- Requests for assistance from projects with potentially positive impacts are prioritized.
- Developers are encouraged to create more sustainable projects from the start, and are given guidance for doing so.

One of the advantages of the scorecard is that project developers will need to fill it in before applying for IDB financing, thus both the developer and the IDB will save time and effort by determining if the project complies with the minimum requisites for sustainability at an early stage. The scorecard will also permit the developer to take corrective action before the project has advanced significantly, and to avoid problems. As such, the scorecard is also an important educational tool for those involved in the tourism industry in Latin America and the Caribbean.

2. Basic Principles

The following has been taken into account in order to develop the Scorecard: 1) Global Standards for Sustainable Tourism (GSTC)\(^1\), which reflect the current international consensus regarding the minimum requirements for a tourism project to be considered sustainable, 2) best practices in sustainable tourism; 3) the opinions and criteria of experts in the various dimensions of sustainability that the scorecard deals with; 4) the suggestions and recommendations of diverse entities involved in the tourism industry in Latin America and the Caribbean (i.e., public sector, private sector, and individuals), mainly by means of two regional workshops to present the Scorecard, which were held in December 2009 and February 2010.

3. Structure

The Scorecard is organized in two large sections:
I. General information about the project.

II. Norms for determining the sustainability of the project.
 A. The project will establish effective sustainable management practices.
 B. The project will maximize social and economic benefits to the local community and minimize possible negative impacts.
 C. The project will maximize benefits to cultural heritage and minimize possible negative impacts.
 D. The project will maximize benefits to the environment and minimize possible negative impacts.
 A. The project will minimize possible negative cumulative impact on the tourist destination.
 B. Real estate ventures associated with the project will not have negative consequences for the tourist destination and the local community.

Section I will allow the IDB to analyze general information about the overall scope, location, and outline of the project, as well as its potential for employment. In this section, the developer fills in blank spaces with the information requested.

Section II contains the 63 sustainability standards comprising the Scorecard, each with six possible performance criteria or indicators. These standards and indicators are applicable to all types of destinations and tourism, and have been designed to assess the probable benefits and potential negative impacts that the private sector tourism project is likely to have at the tourist destination and in the local community. The 63 sustainability standards are organized into 6 areas of concern:

(a) Whether or not the project has effective sustainability management practices.
(b) The potential socioeconomic benefits or negative socioeconomic impacts of the project on the communities affected by the project.
(c) The potential positive and negative impacts of the project on the local cultural heritage.
(d) The potential positive and negative impacts of the project on the environment.
(e) The cumulative impacts of the project, taking into account the context of the tourist destination and that of other projects being built or operated at the tourist destination.
(f) Possible real estate ventures associated with the tourism project.

4. Guidance for the Bank and tourism project developers using the IDB Scorecard

Before requesting IDB financing, tourism project developers or representatives must complete, using Internet or other electronic means, each section of the Scorecard according to the present state of the project. It is recommended that the developer fill out the form as
many times as needed, taking corrective measures to eliminate unacceptable aspects in the project’s design, before sending IDB the project proposal and Scorecard. This will ensure, both for the developer and for IDB, that the project will be environmentally and socially sustainable or acceptable. The Scorecard results, once submitted to the IDB, will constitute a binding commitment for the developer, and will be subject to verification on the part of the IDB.

In Section I, the developer fills in the blanks with the general information requested regarding the project.

In Section II, the developer must mark a response to each sustainability performance criterion listed in parts A, B, C, D, E, and F. The criteria categories indicate different probable impacts caused by the project.

<table>
<thead>
<tr>
<th>Performance Key</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Net positive impact</td>
</tr>
<tr>
<td>Good</td>
<td>Probable positive impact</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Neutral impact</td>
</tr>
<tr>
<td>Potential risk</td>
<td>Of concern to IDB and should be justified or corrected</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>Should be corrected before requesting IDB financing</td>
</tr>
<tr>
<td>N/A</td>
<td>Criterion is not applicable</td>
</tr>
</tbody>
</table>

The criteria and indicators are worded to be largely self-explanatory, but this users’ guide provides explanation in detail both of all the general information required about the project, as well as the criteria and indicators included in the Scorecard. Moreover, references are provided to further information such as on-line sites and documents available on the Internet, as well as a glossary of the most important terms and concepts used in the Scorecard.

Once the project developer completes the Scorecard on-line, the results can be viewed section by section or all at once, and a pdf file can be downloaded with them. The Scorecard does not assign points to projects, but rather generates a “color map” so that the developer can assess the sustainability of the project. Corrective measures should be then taken to eliminate potentially risky aspects, or those that are unacceptable, in the project’s design before requesting that the IDB analyze the project.

The IDB will mainly use the Scorecard as a filter to assess the sustainability of the applications that it receives seeking financing for tourism projects, but also to take into account the design stages and necessary speed and procedures for its loan operations to tourism projects. In this way, the Scorecard makes it possible to identify areas that will have to be improved, and then to measure the impact of the changes that have been made.

The Scorecard, as such, exists to complement and reinforce the IDB’s Policy of Environment and Safeguard Compliance as it applies to private sector tourism projects.
This policy requires that Environmental Impact Studies be carried out on the part of the projects. http://www.iadb.org/topics/topic.cfm?lang=es&id=envi.

5. Detailed guide to using the IDB Scorecard

I. General information requested

<table>
<thead>
<tr>
<th>Date and name of the project</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and name of the project</td>
<td>The date that the Scorecard is completed; inserted automatically.</td>
</tr>
<tr>
<td>Project name</td>
<td>The name under which the project is or will be identified to the IDB.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Sponsorship</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity requesting funding</td>
<td>The company or other entity submitting the proposal and requesting funding.</td>
</tr>
<tr>
<td>Owner</td>
<td>The legal owner of the property to be developed. If the land is leased or under concession, indicate both the owner and the leaser or concessionary.</td>
</tr>
<tr>
<td>Developer</td>
<td>The project developer.</td>
</tr>
<tr>
<td>Operational management</td>
<td>The company or person who will operate the project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project location</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>The country where the project will be developed.</td>
</tr>
<tr>
<td>Project location (province/state, municipality)</td>
<td>This information will enable project evaluators to determine which governmental entities might be involved in issuing permits and licenses.</td>
</tr>
<tr>
<td>Project’s geographic location (latitude, longitude)</td>
<td>Indicating geographic latitude and longitude will enable project evaluators to locate the site exactly on maps and satellite photos.</td>
</tr>
<tr>
<td>Site is or is not located in an urban area</td>
<td>This will specify whether the project will be developed within an urban area or a rural zone, etc.</td>
</tr>
<tr>
<td>Site does or does not have municipal services</td>
<td>This will specify whether the project will be provided with municipal services or not.</td>
</tr>
<tr>
<td>Other details about location</td>
<td>For urban projects, a street address is required. For projects in designated tourism zones or destinations, provide the name of the area. For projects in indigenous or communal property, supply the name of the community. Add any additional relevant information (e.g., oceanfront site on the Pacific or Caribbean coast, etc.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project cost</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
<td>Amount of equity financing (stock sales, cash, land, prior development, etc.).</td>
</tr>
<tr>
<td>Amount requested from the IDB</td>
<td>How much financing will be requested from the IDB?</td>
</tr>
<tr>
<td>Other financing</td>
<td>How much financing will be provided by other sources?</td>
</tr>
<tr>
<td>Total project cost (indicate currency)</td>
<td>Please use international currency designations (e.g., USD for United States dollars) for previous three amounts. The total in this section will be calculated automatically.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>A "greenfield" type project, where no operating tourism enterprises exist.</td>
</tr>
<tr>
<td>Remodel</td>
<td>Tourism projects already exist which will be rebuilt or improved.</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Expansion</td>
<td>Tourism projects already exist which will have new rooms or facilities added to them.</td>
</tr>
</tbody>
</table>

Project stage

<table>
<thead>
<tr>
<th>Under design</th>
<th>This applies to tourism projects from the time they are conceived until construction starts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under construction</td>
<td>This applies to tourism projects from the time construction starts until it ends.</td>
</tr>
<tr>
<td>In operation</td>
<td>This applies to tourism projects that are already receiving guests or clients, even though remodeling or expansion may be in progress.</td>
</tr>
</tbody>
</table>

Proposed components and activities

<table>
<thead>
<tr>
<th>Brief summary of project</th>
<th>A written description of what the project proposes to build and operate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hotel rooms</td>
<td>Basic parameter for determining project scale.</td>
</tr>
<tr>
<td>Number of lots, houses, condominium units, or apartments</td>
<td>Determines the importance of real estate development relative to tourism activities.</td>
</tr>
<tr>
<td>Additional components (golf courses, marinas, casinos, etc.)</td>
<td>Golf courses: number/area. Marinas: number/capacity. Casinos: number/capacity. Other:</td>
</tr>
<tr>
<td>Total area (m²)</td>
<td>Area of the entire property.</td>
</tr>
<tr>
<td>Building area (m²)</td>
<td>Area that will be covered by a roof.</td>
</tr>
<tr>
<td>Open air infrastructure (m²)</td>
<td>Construction area that includes parking lots, roads, swimming pools, etc. that will not be covered by a roof.</td>
</tr>
</tbody>
</table>

Employment generated

<table>
<thead>
<tr>
<th>Employment generated during construction</th>
<th>Number of full-time employees required during construction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time jobs, during operation</td>
<td>Number of full-time employees required during operation of the project once completed.</td>
</tr>
<tr>
<td>Seasonal or part-time jobs, during operation</td>
<td>Number of seasonal or part-time employees required during operation of the project once completed.</td>
</tr>
<tr>
<td>Number of indirect jobs created during operation</td>
<td>Estimate of the number of jobs created in the surrounding communities as a result of the completed project.</td>
</tr>
<tr>
<td>Percentage of supervisors and managers relative to all full-time employees</td>
<td>Estimate of the number of supervisory employees as a percentage of the total, during operation. This figure helps measure the quality of the employment offered.</td>
</tr>
<tr>
<td>Number of full-time employees per room</td>
<td>This total figure is calculated automatically and offers insight into the labor intensity of the project.</td>
</tr>
</tbody>
</table>
II. Standards to determine the project’s sustainability

<table>
<thead>
<tr>
<th>Standards</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The project will establish sustainable management practices</td>
<td>A sustainability management system (SMS) is similar to a quality or environmental management system (QMS and EMS), but incorporates quality, environmental, socioeconomic, and sociocultural issues. The objective is to achieve continuous improvement in all of these issues through clearly-defined and documented processes in the company. The management system’s basic elements, whether for quality, environmental issues, or sustainability, are:</td>
</tr>
<tr>
<td>A.1. The company will have a sustainability management system for the design, construction, and operational phases of the project, and the system will take into account environmental, social, economic, and quality issues in the project’s decision-making processes.</td>
<td>• The enterprise’s sustainability policy, with the participation of top management. This public document is the frame of reference for designing and planning the SMS, as well as a constantly visible reference. It commits the enterprise to sustainability. • Identification of environmental, socioeconomic, and sociocultural aspects of the enterprise: every significant way that the surroundings are affected positively and negatively. • Identification and copies obtained of all laws and regulations that affect the operation of the enterprise and its impact on the surroundings. This includes industry standards and norms, though these may not be legally binding. • Establishing sustainability objectives and goals that are in accord with (a) the policy, (b) aspects of sustainability, (c) criteria of other interested parties (for example, neighbors, vendors, community or environmental organizations, etc.). • Planning actions to achieve the objectives and goals. This is the sustainability management plan. • Determining who will be responsible and what their duties will be, while providing sufficient human and economic resources to ensure compliance. • Training, awareness-raising, and competencies of the employees to ensure that they can comply and that they know why they must do so. • Communication within and outside the enterprise regarding matters of sustainability competence. • Documentation: this is an important aspect of the SMS in order to make it possible to assess progress, compliance, and the need for improvement. • Control of and checks on documentation and procedures. • Operational control in accord with the objectives. • Contingency and emergency plans: identify possible emergencies, their importance, and the corresponding response and prevention procedures. • Monitoring and measurement: this makes it possible to ensure compliance.</td>
</tr>
</tbody>
</table>
• Corrective and preventative actions.
• Periodic management review to ensure that the system functions and improvements are being made.
• Periodic external audits.

There are many resources available on how to create a management system (for instance, the Fundación Ecología y Desarrollo’s Guía para la implantación de un Sistema de Gestión de la Sostenibilidad (SGS) [2007]. http://www.pymessostenibles.net/gestion.asp). When the SMS is developed from the project’s initial planning phase, problems can be avoided and costs reduced during the subsequent phases of development and operation.

While there is still no international standard for sustainability management systems (SMS), a number of enterprises in different economic sectors are developing their own SMS standard so as to be able to incorporate, among environmental aspects and impacts, important socioeconomic aspects and impacts in their decision-making process.

A clear example is BMW, which has developed its own SMS standard based on the ISO 14001 norm for certification of sustainability management systems: “Designing a sustainability management system at BMW group: the Designworks/USA case study.”

A SMS should be based on the “triple bottom line” concept, which requires the managerial decision-making process to incorporate environmental and socioeconomic aspects and impacts (Elkington 1998). Likewise, it should be based on the most widely accepted definition of sustainable development: “development which meets the needs of the present without compromising the needs of future generations” (United Nations’ Worldwide Commission on Environment and Sustainable Development, 1987).

The objective of an SMS is to achieve continuous improvement in environmental and socioeconomic aspects and impacts through clearly-defined and documented processes in the company. Many references are available about how to build a management system. When the SMS is developed from the very beginning of a project, problems can be avoided and costs reduced in the subsequent project development.

Existing projects or those already underway should ideally have a sustainability management system (SMS) for the design, construction, and operational phases. While a complete SMS is desirable for new projects, it is unrealistic to be fully developed at this stage. Nevertheless, some aspects can be developed even before initiating the project: The sustainability policy consists of the overall intentions and direction of an organization related to sustainability as formally articulated by top management. The goals and budget ensure that the project will have set aside resources for compliance with the sustainability policy.

Resources:
http://goliath.ecnext.com/coms2/gi_0199-5182601/designing-a-
A.2. The project will have a sustainability management system for the design, construction, and operational phases that will take into account prevention and management of natural risk factors such as rising sea level, floods, hurricanes, earthquakes, fire, erosion, land subsidence or sinkholes, and aquifer salinization.

A project that does not take into account assessment of natural risk factors is at constant risk of unforeseen environmental damage. A sustainable project is one whose design is based on assessment of natural risk factors.

A.3. The company has assembled a list of all relevant international and national laws and regulations pertaining to environmental, social, and cultural issues, as well as those related to labor rights and management of natural risk factors, all of which have been compiled in a form that can be consulted easily by those executing or managing the project.

An easy-to-use compilation that identifies laws pertinent to a project will make it possible for an enterprise to determine which measures must be taken in order to comply with the law. Moreover, it permits financiers, investors, authorities, and interested parties to quickly decide if the project does in fact comply with the legal requirements. A summary in digital form will be useful for outside consultation, whereas printed copies – preferably on loose sheets that are simple to replace – allow personnel to review legal requirements while away from the office on the property.

A.4. The project is not in violation of laws or regulations pertaining to environmental, social, and cultural issues, as well as those related to labor rights and management of natural risk factors, and will obtain all required licenses and permits.

It is expected that the project will have already obtained or applied for all required licenses and permits before requesting financing. Likewise, it is expected that the project and its associated enterprises will not be in violation of laws or regulations, and it is important that any infractions will have been corrected.

A.5. A program will be designed and budgeted for periodic training of all personnel regarding their role in the best environmental, social, cultural, and labor practices, as well as risk management.

In order to ensure that an enterprise will be operated suitably and sustainably, a training program can be designed and budgeted during the planning phase and then implemented during operations. The design and documentation should be sufficiently specific so as to determine whether the enterprise has complied with its plan once it begins to actually operate.

A.6. The project’s buildings and infrastructure will comply with local, regional, and national zoning requirements for tourism planning, natural protected areas, as well as historical or archeological sites.

Tourism projects are often built within or near places that attract the public, such as natural protected areas, and historical or archeological sites. At times they are built within or near places that are culturally sensitive, such as sanctuaries and shrines, sacred grounds, cemeteries, or communities with traditional ways of life. The project must comply with all regulations and legal requirements to protect the natural and cultural features of the area.

If the project is located within a protected area, a flowchart of the...
| A.7. The project will take into account its environmental and architectural harmony, that is, with the manmade surroundings and the ecosystems of the region. | Local, regional, and national environmental laws or regulations along with the procedures for completing paperwork for all required licenses and permits must be presented. Additionally, a brief description of each phase and/or the needed authorization will be required, indicating what has already been obtained, and what else remains to be issued. |
| Tourism projects are often built within or near attractions such as natural protected areas, and historical or archeological sites. These sites and the surroundings are important assets for tourism and must be respected. |

The project’s impact on its natural, social, historical and archeological surroundings will be assessed.

Impact assessment refers to an evaluation, prior to initiating a project, of the probable impacts, positive and negative, on the environment and the local culture and economy.

A synthesized description of the current legally binding instruments has to be presented; those that deal with impact on the environment should be separated from the ones that focus on historical, archeological, or cultural value. A flowchart is needed of the local, regional, and national environmental laws and local procedures for obtaining permission to carry out the proposed site use, including a brief description of each phase and/or the authorization required, indicating what has already been obtained, and what still remains to be issued. Social impact with examples of assessment means or applicable guidelines must also be included.

A.9. Land rights and property acquisition are legal and comply, where applicable, with local communal rights, as well as those of the IDB indigenous and involuntary resettlement policy.

The project must demonstrate by means of a simple flowchart those laws and procedures applicable to the legal held land and property acquisition rights, and these have to be congruent with local communal rights.

A.10. Design and construction of buildings and infrastructure will use locally appropriate principles of sustainable construction.

The term sustainable construction is used when the design of a project takes into account: (a) compliance with the applicable legal framework, (b) the conservation of the structure and function of the ecosystems and natural resources involved, (c) the conservation of the environmental goods and services provided by the ecosystems involved, (d) the least fragmentation of ecosystems possible, (e) the conservation of ecosystems and sensitive, environmentally important resources, (f) the project’s harmony with the natural and cultural surroundings, and (g) the implementation of sound environmental practices in its design, construction, and operation, among other aspects.

Sustainable construction is the implementation of sustainable design. Building materials and styles reflect local availability and traditions. Ideally, buildings should harmonize with local traditional styles, while using materials that do not deplete local supplies. Both active and passive design types permit reduction in...
energy use. Passive design enables buildings to control heating, lighting, and cooling through design features that do not require machinery or energy consumption (e.g. natural lighting; cooling by natural air circulation; masses of masonry to store heat, etc.). Active design involves technology that controls these aspects and requires external sources of energy (e.g. heat exchangers, efficient air conditioners, etc.). For more information on best practices for sustainable design and construction, consult the following sources:

- The LEED standard (www.usgbc.org), which is a U.S. based program for certifying sustainable design and construction.
- The “Sustainable Hotel Siting, Design and Construction” guide published by the International Tourism Partnership. (http://www.tourismpartnership.org/Publications/SDCGuidelines.html).

A.11. The design, construction, and operation of buildings and infrastructure will provide access for persons with special needs.

Buildings and infrastructure are generally required to comply with the United Nations Convention on the Rights of Persons with Disabilities (www.un.org/disabilities/convention/conventionfull.shtml), which states that “private entities that offer facilities and services which are open or provided to the public take into account all aspects of accessibility for persons with disabilities” and local legislation. Nonetheless, the nature of some tourism activities, such as adventure tourism, may not permit this.
B. The project will maximize social and economic benefits to the local community and minimize possible negative impacts.

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The project will present its proposed plans to the local community, these will include the project’s scope, location, stages, needs for skilled labor, job opportunities at the project’s various stages and in the long-term, as well as how the community can prepare in order to receive the greatest benefit possible from the project’s activities.</td>
<td>A project that is large in scope can significantly affect a community’s way of life for good or for bad. Early planning with the community can help an Enterprise to get skilled labor, to receive the community’s support in all phases of the Project, and avoid possible friction with community members. In short, it is a sound entrepreneurial practice.</td>
</tr>
<tr>
<td>B.2. The activities of the project will not jeopardize the provision of basic services -- such as water, energy, or sanitation -- to neighboring communities, and if possible, will improve them.</td>
<td>A common problem with tourism developments is the monopolization of the local water supply, which does not leave enough water for local residents. This also applies to other utilities and services.</td>
</tr>
<tr>
<td>B.3. The company will actively support both public and private initiatives for social and infrastructure community development including, among others, education, health, housing, and sanitation.</td>
<td>The concept of “local” will vary depending on the site. It is usually considered to be the immediate area around the project’s site, but in very remote areas, there may be no local population. This standard is based on the principle that there is an organized and integral local community, which does not occur in many tourism projects. Generally, “social” support, or forms of support for “social infrastructure” will be defined and agreed upon with municipal authorities. When these projects are agreed upon with the local community, both the community and the business benefit, and good relations are cemented for the future. Generally, a tourism project’s community development program, whether it is being planned or underway, is manifested in the enterprise’s Social Responsibility Program, and it would be best to include examples of applicable successful cases.</td>
</tr>
<tr>
<td>B.4. The project’s purchasing policy will favor locally produced goods, especially agricultural products, and services.</td>
<td>A purchasing policy will help local entrepreneurs, but it also will help determine operating costs for the business. Local goods and services are frequently less expensive than those brought in from far away, but the business may need to work with local providers to ensure adequate quality, safety, volume, and availability of the goods and services.</td>
</tr>
<tr>
<td>B.5. The project will collaborate with local small enterprises to further their development and ability to sell sustainable goods and services (such as food and beverages, crafts, agricultural products, nature tours, transportation, horseback riding, etc.) that are derived from or based upon the area’s wildlife, history, and culture.</td>
<td>Such collaboration contributes to maximizing the benefits of the tourism project for the community.</td>
</tr>
<tr>
<td>B.6. The project will develop a code of conduct for its activities in indigenous and local traditional communities with the consent of, and in collaboration with the community, as well as in compliance with IDB indigenous policy guidelines.</td>
<td>See the IDB Operational Policy on Indigenous Peoples, and the IDB Strategy for Indigenous Development (OP-765) and www.iadb.org/sds/doc/ind-111PolicyE.pdf (http://www.iadb.org/sds/doc/ind-111EstrategiaS.pdf). As well as Involuntary Resettlement: Operational Policy and Background.</td>
</tr>
</tbody>
</table>
B.7. The project will actively support job training for local and national residents so that they may take part in the construction, operations, and management of the project, and will favor local hiring when feasible.

- Ideally, enterprises will have a qualified work force from the local community at the site to carry out preparation of the terrain, building, operation, and maintenance, but unfortunately this does not often take place; instead these positions are filled by experienced workers from other regions.
- The concept of “local” will vary depending on the site. It is usually considered to be the immediate area around the project’s site, but in very remote areas, there may be no local population.
- A local resident is the citizen or foreigner who resides in the local community most of the year.
- For projects not yet underway, establishing a policy and procedures for local hiring will demonstrate the enterprise’s good intentions.

B.8. Qualified local and national applicants will be employed for construction of the project.

B.9. Qualified, available local residents will be employed in the operation of the project.

B.10. Qualified, available local residents will be employed in managerial positions.

Socioeconomic stability in neighboring communities is linked to high-quality employment. However outlying communities may not initially have qualified personnel and training may require a number of years. It is in the project’s long-term interest to train local personnel for management positions.

B.11. The project will implement a policy with measures against workplace and sexual exploitation, particularly of children and adolescents, women, and minorities.

- See ILO conventions 138 (Convention concerning Minimum Age for Admission to Employment) and 182 (Convention concerning the Prohibition and Immediate Action for the Elimination of the Worst Forms of Child Labour), http://www.ilo.org/ilolex/english/convdisp1.htm.
- The signing of the from UNWTO, UNICEF, ECPAT, etc. codes of conduct is evidence of implementation of policies (see www.thecode.org).

B.12. The project will engage in equal opportunity hiring of women, local minority members, and persons with disabilities, including for managerial positions.

The presence of national minority groups in the local population should be determined, and an effort made to hire them, at least in proportion to their presence in the population. There should be no discrimination in hiring. To demonstrate that equal opportunity hiring exists, there should be a non-discrimination policy, with procedures for transparent hiring and promotions, as well as no unresolved legal suits for discriminatory practices.

B.13. International and national legal protection of employees will be respected.

This refers to local labor legislation, as well as the ILO (International Labor Organization) conventions. http://www.ilo.org/ilolex/english/convdisp1.htm.

One of the best ways to ensure worker protection is for payroll taxes to be deducted and paid directly to the corresponding public organization. Employees who are doing their jobs properly are protected, and their seniority and social security benefits are guaranteed, as well as the state’s need for payroll tax revenues.

B.14. Employees will be paid a living wage, and will be provided suitable housing during the construction and operations stages when the project requires their

Fair wages paid to workers during the project’s building and operations stages contributes to good will with the neighboring communities and local authorities. Minimum wages are set by
| continuous physical presence at the site. | law in most countries, but may not be enough to cover living expenses. The ILO (International Labor Organization) defines a living wage as providing “enough income to cover a family’s basic needs in a specific economy.” (www.ilo.org/public/libdoc/ilo-Thesaurus/spanish/tr4634.htm).
Enterprises should ensure that at the very least, their workers are not living in overcrowded conditions, and that the project is not creating poverty-stricken areas nearby.
When the project needs to provide housing for workers at the site, local best practices must be adhered to, and overcrowding and poor sanitation prevented. |
C. The project will maximize its benefits to cultural heritage and minimize negative impacts.

<table>
<thead>
<tr>
<th>C.1. The project contributes to the protection and conservation of local and national heritage, both tangible and intangible, as well as respect for its value.</th>
<th>For more information about intangible cultural heritage, see: http://www.unesco.org/culture/ich/index.php?pg=00002. The International Council on Monuments and Sites (ICOMOS) guidelines indicate how cultural sites can be conserved and developed. National and local guidelines and regulations should also be followed. For indigenous communities and sites, see IDB Operational Policy on Indigenous Peoples and Strategy for Indigenous Development, www.iadb.org/sds/doc/ind-111PolicyE.pdf. A non-profit initiative to foster the private sector’s contribution to the protection and conservation of humanity’s cultural heritage is the World Heritage Alliance (WHA), created by Expedia Inc and the UN Foundation with UNESCO. For more information, go to: http://www.worldheritagealliance.org.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2. The project promotes visits to local historical or cultural monuments and sites.</td>
<td>Before starting a project that affects culturally or historically sensitive sites, the developer may be under legal obligation to determine whether there is an existing code of behavior, or else establish one together with the local community or authorities on culture. For indigenous communities and sites, see IDB Operational Policy on Indigenous Peoples and Strategy for Indigenous Development, www.iadb.org/sds/doc/ind-111PolicyE.pdf.</td>
</tr>
<tr>
<td>C.3. The project will not impede access by local residents to historical, cultural, and spiritually important sites.</td>
<td>In nearly all cases, it is important to respect acquired community rights to cultural and recreational sites. For indigenous communities and sites, see IDB Operational Policy on Indigenous Peoples and Strategy for Indigenous Development, www.iadb.org/sds/doc/ind-111PolicyE.pdf.</td>
</tr>
<tr>
<td>C.4. The project will use elements of local art, architecture, or cultural heritage in its building design and decoration, as well as in its landscaping.</td>
<td>The use of local design elements reinforces local culture.</td>
</tr>
</tbody>
</table>
D. The project will maximize its benefits to the environment, and minimize possible negative impacts.

D.1. Conserving resources

<table>
<thead>
<tr>
<th>D.1.1. The project’s purchasing policy will favor environmentally friendly products for building materials, capital goods (i.e., those used in the production of commodities), food, and consumables.</th>
<th>Environmentally friendly products are those which (a) diminish the level of environmental impact (b) come from renewable resources (c) are biodegradable, (d) are environmentally certified as their origin, and (e) fulfill other criteria. For example, precious hardwoods and palm thatch are frequently used in high-end tour developments without considering whether they are obtained from renewable sources, such as plantations or certified wood harvesting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.2. Energy consumption will reduced to a minimum by means of design and construction features.</td>
<td>When a building is designed from the start to reduce energy consumption, the added capital cost is minimal and substantial energy savings are perceived throughout the life of the project. The design must consider whether the buildings are in a cold or a warm climate, prevailing wind direction, and the amount of sunlight available throughout the year.</td>
</tr>
<tr>
<td>D.1.3. Energy consumption will be measured and sources indicated, including electricity, fossil fuels, and firewood. Measures to decrease overall consumption and document the reduction will be adopted over time.</td>
<td>Measuring energy and comparing consumption with industry benchmarks, such as www.tourbench.info, will allow an energy-saving program to be implemented.</td>
</tr>
<tr>
<td>D.1.4. Renewable energy sources, such as photovoltaic solar panels, wind, hydroelectric generators, tree plantations for firewood, biofuels, or other renewable sources, will be used whenever feasible.</td>
<td>The capital cost of investing in renewable energy for a large tourist development can have an amortization time between 2 and 10 years. After that time, energy costs are returned.</td>
</tr>
<tr>
<td>D.1.5. Water consumption will be measured, sources indicated, and measures to decrease overall consumption will be adopted.</td>
<td>Water consumption is perhaps the most important environmental impact of large tourist projects. Industry benchmarks for different types of tourism development are available at www.tourbench.info.</td>
</tr>
<tr>
<td>D.1.6. Water taken directly from the source for the preparation, construction, and operation of the project will not jeopardize the environmental quality of the aquifer, nor its usefulness and viability in the present and future.</td>
<td>On various occasions, large-scale tourism projects in Latin America and the Caribbean have extracted source water without carrying out the proper studies, which has caused salinization and loss of the resource for human use, agriculture, and ecosystems.</td>
</tr>
<tr>
<td>D.1.7. Golf courses will be designed, built, and operated according to international best environmental practices to ensure the least possible impact on soil, aquifers, and marine areas, as well as the protection of wildlife. In particular measures will be taken into account to (a) reduce water consumption, (b) prevent contamination of the soil and aquifer, (c) use low-toxicity agrochemicals, (d) as well as to ensure the conservation and comprehensive management of ecosystems and biodiversity.</td>
<td>The largest source of water consumption in tourism projects is for irrigating golf courses. However this can be dramatically reduced by using treated gray water for underground irrigation and using grasses that are adapted to the local climate. The main resource for learning about best practices for the sustainable design, construction, and operation of golf courses is The Audubon Society, a non-profit organization based in the US (www.auduboninternational.org/ge.html). Audubon International has developed two programs to promote the implementation of best industry practices: • Audubon Signature Program (ASP) for Golf Courses, which is a planning and sustainable management program for new golf course</td>
</tr>
</tbody>
</table>
D.2. Reducing pollution

D.2.1. Greenhouse gas emissions from all sources controlled by the project will be measured, and procedures will be implemented to reduce and offset them as a way to achieve climate neutrality. Moreover, guests will be encouraged to offset carbon emissions generated by their travels to the tourist site.

- A growing problem worldwide is global warming, generated by emissions of carbon dioxide (CO₂) and methane, the most important greenhouse gases. Tourism contributes to this through air transport, fossil fuel use, and electrical consumption. Businesses can calculate what their emissions are by using tools such as the World Resources Institute’s “Greenhouse Gas Protocol”: www.ghgprotocol.org.

- Enterprises can lower their emissions by reducing non-renewable energy consumption (electricity and fossil fuels) and improving the treatment of sewage and organic waste.

- Enterprises that offset their emissions should adhere to international standards that will ensure that this is done properly. Offsets are based on financing (a) reducing emissions of methane, CO₂, or other greenhouse gases; (b) reducing deforestation of old-growth forests; or (c) absorbing CO₂ through rapid tree growth in plantations or secondary forests.

- The ISO 14064 standards from the International Organization for Standardization (ISO) are: “Greenhouse gases: Specification with guidance (1) at the organization level for quantification and reporting of greenhouse gas emissions and removals, (2) at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancement, and (3) for the validation and verification of greenhouse gases.”

D.2.2. Sewage will be treated effectively, using international best environmental practices for primary, secondary, and tertiary treatment.

At present, most large tourism projects in developing countries (a) do not have access to municipal sewage treatment as these either do not exist or are too far from the project sites, (b) do not properly treat the waste water themselves, creating major impact on activated effluent and soils.

Sewage treatment consists of three main phases:

- Primary: separation of solid matter from liquids by sedimentation so that each can be treated properly.
- Secondary: oxidizing solid or organic matter by the aerobic and anaerobic processes proper to sewage treatment installations.
- Tertiary: elimination of nutrients (nitrogen and phosphorus) from liquid. Coral and aquatic plants are especially sensitive to the sewage with high nutrient content discharged from tourism projects. An alternate method to conventional tertiary sewage treatment, and one that does not require energy or chemical use, is the use of oxidation ponds together with assimilation into the soil.

In addition to these basic processes, disinfecting the water is recommended as the final treatment to eliminate pathogens.

For more information, see:
http://www.training.gpa.unep.org/content.html?id=229&ln=11
www.femica.org/institucional/proyectos/proarca/pdf_sigma/guia_aguas
D.2.3. Gray water will be treated effectively, and the project can either recycle or reuse the treated effluent.

Gray water is effluent from laundries and all other waste water sources with the exception of toilets. When properly treated, it is safe for use in irrigation of lawns, landscaped areas, and golf courses.

D.2.4. A solid waste management plan will be implemented, with quantitative goals to minimize and properly dispose of waste that is not reused or recycled.

Hotels produce large quantities of solid waste. While recycling reduces the impact somewhat, many hotels are located in remote areas, with no municipal collection and recycling. A solid waste management plan that emphasizes reducing the quantity of waste produced is cost effective relative to recycling. When the waste management plan is established in the design phase, suitable facilities for handling waste can be established as part of the business plan. Best local practice for waste management will vary, but most techniques are fairly standard and can be found in the best practice guidelines from Rainforest Alliance at www.rainforest-alliance.org/tourism/documents/tourism_practices_guide.pdf.

D.2.5. The use of harmful, toxic, or flammable substances, including pesticides, paint, swimming pool disinfectants, and cleaning materials, will be minimized and substituted, when available, by innocuous products; and all chemical use will be properly managed in accordance with national and international regulations.

A good source of information on managing harmful, toxic, or flammable substances is the US Environmental Protection Agency web site: http://www.epa.gov/opptintr/.

D.2.6. The project will, whenever possible, avoid actions that result in pollution from runoff and erosion.

Permeable surfaces in parking lots and other paved areas are preferable. Runoff from parking lots is a significant source of contamination of streams and rivers. Catchment basins and surfaces that are permeable can trap oil and fuels before they enter the watershed.

D. 3. Conservation of ecosystems, natural resources, and landscapes

D.3.1. The location, design, construction, and operation of the project will take into account the conservation of sensitive ecosystems and natural resources, as well as those having high environmental value.

One of the major environmental impacts generated by tourism projects involves vegetation that is eliminated with the consequent fragmentation and loss of both ecosystems as well as environmental goods and services. A sustainable tourism project is one which ensures that removal of plants and the partial effect of this on ecosystems will not jeopardize their basic environmental function.

D.3.2. The project’s location, design, construction, and operation will ensure that ecosystems and plant species are used with the least fragmentation possible, and that neither their natural functions or the environmental roles they play, as well as the goods they provide, are jeopardized.

There have been a number of cases in which tourism project development in coastal zones has negatively impacted the environment in major ways, as well as unnecessarily increasing the sites’ vulnerability to natural threats (i.e., hurricanes, earthquakes, and tsunamis). Coastal zone ecosystems are crucial both to protect infrastructure as well as to serve as natural attractions and breeding grounds for marine life. In particular, it has been shown that mangrove swamps shield coastal infrastructure from the effects of such phenomena, and also are areas of...
D.3.5. The local community will have access to the beach associated with the project in order to be able to carry out economic activities related to fishing.

The natural vegetation of sand dunes plays a similar role, while coral reefs and seaweed beds are essential centers of biodiversity as well as important tourist attractions.

Only engineering studies of coastal zones and their morphology can define the area where a beach requires its natural dynamic, as well as that area that may be needed to withstand extreme, unlikely natural phenomena. Such needs are specific to each locale, and may give rise to excessive norms and standards in the region (or more often, those which are inadequate).

If sand dunes exist, project infrastructure must be placed after the first seafront row.

Coastal works (manmade or altered beaches, breakwaters, dredging, fill, etc.) can bring about significant negative physical and ecological impacts, but also can result in neutral or positive ones (improved safety during natural disasters, habitat creation, economic benefits, etc.)

However, construction of breakwaters often results in harmful effects for natural coastal processes, especially beach erosion at the site or nearby.

Abundant engineering studies of coastal zones exist that can serve as tools for analysis and calculations of impacts on natural coastal processes, and as such they should be taken into account and integrated during a project’s planning and design phases (i.e., the conceptual and preliminary stages) in addition to environmental impact studies. Many other engineering tools are available for managing impacts on natural coastal processes. The minimum standard is that suitable studies be carried out, that long-term maintenance procedures and risk levels be identified (both in terms of probability and costs), that in the project’s budget associated costs with margins for safety and error be included, and that legal and financial structures be implemented for the sustainability of the needed actions, regardless of the project’s economic performance.

The developer will demonstrate the project’s commitment to avoiding and minimizing impacts in violation of standards as well as to design the most suitable coastal work by means of performing integrated planning studies for the project’s design (including financial, environmental, and engineering, physical, and social issues, as well as aspects related to access and integration); having engineering studies done of specific coastal areas (field studies, technical studies done away from the site, numerical models, etc.); creating the legal and financial structure needed (environmental trust funds or endowments, natural reserves in perpetuity, organizations for the continuing management of coastal impacts to be funded with revenues from the project, etc.) so as to ensure that longterm conservation and maintenance will be carried out.

D.3.6. The local community will have access to the beach associated with the project in order to be able to carry out recreational activities.

Coastal works (manmade or altered beaches, breakwaters, dredging, fill, etc.) can bring about significant negative physical and ecological impacts, but also can result in neutral or positive ones (improved safety during natural disasters, habitat creation, economic benefits, etc.)

However, construction of breakwaters often results in harmful effects for natural coastal processes, especially beach erosion at the site or nearby.

Abundant engineering studies of coastal zones exist that can serve as tools for analysis and calculations of impacts on natural coastal processes, and as such they should be taken into account and integrated during a project’s planning and design phases (i.e., the conceptual and preliminary stages) in addition to environmental impact studies. Many other engineering tools are available for managing impacts on natural coastal processes. The minimum standard is that suitable studies be carried out, that long-term maintenance procedures and risk levels be identified (both in terms of probability and costs), that in the project’s budget associated costs with margins for safety and error be included, and that legal and financial structures be implemented for the sustainability of the needed actions, regardless of the project’s economic performance.

The developer will demonstrate the project’s commitment to avoiding and minimizing impacts in violation of standards as well as to design the most suitable coastal work by means of performing integrated planning studies for the project’s design (including financial, environmental, and engineering, physical, and social issues, as well as aspects related to access and integration); having engineering studies done of specific coastal areas (field studies, technical studies done away from the site, numerical models, etc.); creating the legal and financial structure needed (environmental trust funds or endowments, natural reserves in perpetuity, organizations for the continuing management of coastal impacts to be funded with revenues from the project, etc.) so as to ensure that longterm conservation and maintenance will be carried out.

D.3.7. The design, construction and operation of marinas and waterways (estuaries, canals, and the like) will not negatively impact aquifers, adjacent ecosystems both aquatic and on land, or natural coastal processes.

There have been a number of cases in which the careless implementation of marina projects has resulted in serious negative impacts on the environment. However, a marina can result in positive socio-economic impact if it facilitates the integration of the local community within the tourism enterprise and is planned, built, and operated making use of best practices. The developer will demonstrate the project’s commitment to avoiding and minimizing impacts in violation of standards as well as to design the most suitable coastal work by means of performing integrated planning studies for the marina project’s design (including financial,
environmental, and engineering, physical, and social issues, as well as aspects related to access and integration); having engineering and multidisciplinary studies done to minimize and prevent impacts (field studies, technical studies done away from the marina site, numerical models, etc.); and creating the legal and financial structure needed (environmental trust funds or endowments, natural reserves in perpetuity, organizations for the continuing management of natural areas to be funded in perpetuity with revenues from the project, etc.)

Coastal watersheds can be affected by projects that excavate canales, inland waterways, and docks. As such, it is essential to demonstrate that no potable water sources will be impacted by the project, and that the ecosystem’s functionality will not be affected as a result of impact on the watershed.

Coastal and adjacent marine ecosystems, as well as biodiversity, can be affected by direct impacts (removal or alteration of mangroves, wetlands, coral), as well as by changes made to the hydraulic system or to habitats. Large scale projects can compensate for focused direct impacts by implementing conservation and compensation plans and creating the legal and financial structure needed to ensure their long-term sustainability. Smaller projects (or large scale ones that do not implement the sustainable legal and financial structure needed to ensure conservation) can produce substantial cumulative impact.

Water quality at marinas and their surroundings must be studied and monitored, but best industry practices for environmental management of marinas suitably controls water quality in the long term. Certification programs (Blue Flag/Bandera Azul, http://www.blueflag.org/, Clean Marina http://coastalmanagement.noaa.gov/marinas.html, etc.) are good indicators of suitable management programs, but it must be verified that operating costs to ensure compliance with the programs have been included in feasibility studies.

Impacts on coastal and shoreline processes are typically erosion caused by construction of works such as breakwaters. Many of these impacts can be excessive and unacceptable at open beaches and those with strong surf. Impacts are normally minimal at naturally protected or sheltered beaches and those with low sediment. Abundant engineering studies of coastal zones exist that can serve as tools for analysis and calculations of impacts on natural coastal processes, and as such they should be taken into account and integrated during a project’s planning and design phases (i.e., the conceptual and preliminary stages) in addition to environmental impact studies. Many other engineering tools are available for managing impacts on natural coastal processes.

D.4. Biodiversity conservation

D.4.1. The project will collaborate in biodiversity conservation, including supporting natural protected areas and areas of high biodiversity value.

Biodiversity is the sum of all forms of living beings. Many species are in danger of disappearing because of human activities. Tourism projects can and should contribute to conservation by supporting local protected areas or establishing private nature reserves.

21
D.4.2. The project will conserve original vegetation at the site, or will employ native species for landscaping, and will take measures to avoid the introduction of invasive alien species.

The use of native species for landscaping dramatically reduces the need for water, pesticides, and fertilizers. In addition, they attract birds and butterflies for the enjoyment of guests. Invasive alien species can overwhelm native plants and animals, especially on islands.

<table>
<thead>
<tr>
<th>D.4.3. The project will not exploit wildlife species, i.e., flora and fauna, for consumption, display, sale, or international trade, except as part of a regulated activity that ensures that their utilization is sustainable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many hotels display, use, or sell products that are obtained from the wild unsustainably, such as corals exhibited in the lobby or the souvenir store, precious hardwoods in furniture and crafts, orchids for display or sale, etc. This is bad for the company’s image, and frequently illegal. However, nearly all of these products (except corals and most other marine products) can be produced sustainably, in which case their use or sale is not only acceptable, but is actually desirable. When the sustainable use is documented for the consumer, this benefits the image of the business and sustainable activities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D.4.4. No wildlife will be held in captivity by the project, except for properly regulated activities, and living specimens of protected wildlife species will only be kept by qualified, authorized individual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many hotels have wild animals such as reptiles, land and aquatic mammals, amphibians, and birds that are kept as pets or caged. Some projects have small zoos. This sort of use is undesirable – and bad for the company’s image – except when there is a legitimate conservation activity associated with the captive wildlife.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D.4.5. Interactions with wildlife (i.e., flora and fauna) and their habitats at any stage of the project will not produce adverse effects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many tourism activities involve viewing wildlife, on land or under water. Policies can be established to ensure that tourism projects do not damage wild populations, during construction and operations, while permitting guests to view wildlife forms in their nature settings. Particular attention should be paid to avoiding damage to coral reefs, mangroves, wetlands, and beach vegetation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D.4.6. The project will implement practices to protect sea turtles and their nesting beaches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lights can disorient nesting sea turtles when they try to lay eggs on beaches. The project must implement measures to protect these animals from manmade light by diffusing it, preferably by using red, low wattage illumination, and prohibiting lit torches on the beach after sunset. Other needed measures are to block beach access to cattle, dogs, cats, and to motor vehicles except for those carrying out research or security patrols.</td>
</tr>
</tbody>
</table>
E. The project will minimize its possible cumulative negative impacts on the tourism destination.

<table>
<thead>
<tr>
<th>E.1. Project tourism development plans will comply with legislated master plans for regional development and tourism zoning.</th>
<th>Where local master plans for development and zoning exist, the project should fully comply with them.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.2. The projected increase in visitors from this project will not cause total visitor numbers at the destination to exceed the carrying capacity established by local, regional, or national authorities, or that set forth in master plans for tourism zoning.</td>
<td>Visitor carrying capacity can be estimated using any of a number of techniques, such as Limits to Acceptable Change (LAC). When this capacity has already been estimated, the current project, combined with all other projects in operation or approved, should not lead to exceeding this limit, as visitor enjoyment is reduced (hence profitability), while social and environmental impacts increase. For more information, see: http://www.biodiversity.ru/coastlearn/tourism-eng/con_capacity.html.</td>
</tr>
<tr>
<td>E.3. The projected increase in rooms for visitors generated by this project will not cause total room numbers at the destination to exceed limits established by local, regional, or national authorities, or that set forth in master plans and norms for tourism zoning.</td>
<td>National or regional master plans have in many cases already estimated the maximum number of hotel rooms that can be supported with existing municipal infrastructure and services. The current project, combined with all other projects whether already in operation or only approved, should not exceed this limit, as profitability may suffer, and social and environmental impacts are likely.</td>
</tr>
<tr>
<td>E.4. Projected requirements for municipal services and infrastructure (water, sewage, garbage collection, police, road maintenance, etc.) will not exceed the capacity determined by local, regional, or national authorities or master plans and norms for tourism zoning.</td>
<td>If municipal services are needed but unavailable, the enterprise’s business plan should include the cost of establishing and operating these services, either privately or through the local government.</td>
</tr>
<tr>
<td>E.5. The project will pay the full operating cost of any municipal services it may require.</td>
<td>Despite the fact that they become major users of municipal services, many tourist developments are able to obtain tax exemptions. This leads to the financial deterioration of local government and services. The project’s business plan should contemplate paying the full cost of these services, even if the project is technically eligible for tax exemption.</td>
</tr>
</tbody>
</table>
F. The tourism project’s housing and real estate activities will not produce negative impacts on the destination and local community.

<table>
<thead>
<tr>
<th>Standards</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.1. The internal rate of return (IRR) of the total project will not depend on real estate transactions for its financial viability.</td>
<td>There has been a trend to use tourism projects as a disguise for non-sustainable real estate development. This is because tourism projects are frequently eligible for financial incentives that are not available for real estate projects. A reasonable way to determine whether a proposed project is primarily for tourism or for real estate is to calculate the internal rate of return (IRR) of the project without considering real estate sales. Typical tourism IRR for unleveraged large developments runs from 12-16%, although it can be much higher. Lower rates indicate an excessive dependence on real estate for financial viability. See www.expresshospitality.com/20080615/management11.shtml, www.hospitalitynet.org/news//4035673.html, and www.meridiacapital.com/files/8.%20Hotel%20Investment%20%20(December%2008).pdf.</td>
</tr>
<tr>
<td>F.2. All of the tourism project’s real estate sales, transfers, and rentals will be locally registered, and at true market value.</td>
<td>Frequently, real estate transactions associated with tourism development are conducted offshore or for registered prices far lower than real prices. This lowers the tax base for local governments and makes it difficult for them to offer services to the new development or to local residents.</td>
</tr>
<tr>
<td>F.3. The second homes will be added to the tourism project’s available lodging or hotel space, and will be regulated in a similar way.</td>
<td>Second homes (houses, condominiums, and apartments) contribute to the local economy in the same way that a hotel does when they are offered as part of the available pool of hotel rooms with full hotel services. On the other hand, when they are privately marketed offshore or hardly used at all, very little money enters the local economy.</td>
</tr>
<tr>
<td>F.4. Taxes or fees for municipal services will be paid on houses, condominiums, and apartments when added as part of the tourism project development regardless of whether they are primary residences or second homes.</td>
<td>Owners of homes, condominiums, and apartments that are exempt from local taxes as part of a tourism development become users of municipal services (water, sewers, garbage collection, police, road maintenance, etc.) without contributing to their support. This leads to financial pressure and on local governments and the resulting reduction of services these governments can provide.</td>
</tr>
</tbody>
</table>
GLOSSARY

Active design – Technology that controls heating, cooling, and lighting and requires external sources of energy.

Aerobic plant – A sewage-treatment plant that functions by adding oxygen to waste water to decompose organic materials. It generally requires a constant source of electricity to circulate the water and oxygenate it.

Audubon Cooperative Sanctuary Program (ACSP) – “Education and certification program that helps golf courses protect the environment and preserve the natural heritage of the game of golf. By helping people enhance the valuable natural areas and wildlife habitats that golf courses provide, improve efficiency, and minimize potentially harmful impacts of golf operations, the program serves as vital resource for golf course.”

Audubon Signature Program (ASP) for Golf Courses – “The Audubon Signature Program provides comprehensive environmental planning assistance to new developments. The program helps landowners and developers design for the environment so that both economic and environmental objectives are achieved. Once construction is complete, involvement in an Audubon Signature Program ensures that managers apply sustainable resource management practices in the long-term stewardship of the property.”

Available room pool for tourism – Second-homes and condominiums associated with hotels are frequently rented as time-shares or as additional hotel rooms. When they are rented as hotel rooms and are included in the pricing and services of the hotel, they form part of the room pool when they are not in use by the owner.

Benchmarking – A process to measure a business’s performance, for example in energy, water, and recycling for comparison with similar businesses.

Carbon footprint – A cumulative measure of the impact a product, service, activity, company, individual or other entity has on the environment, in terms of the amount of greenhouse gases produced, and measured in units of carbon dioxide. These impacts usually result from energy consumption, pollution, and other sources.

Carbon neutral – A combination of efficiency improvements (resulting in reduced carbon dioxide emissions) and purchase of carbon offsets that balances 100% of a carbon footprint.

Carbon offset – A reduction in carbon dioxide emissions by a project (such as rainforest preservation) that is sold to a purchaser to balance the purchaser’s own emissions. The funds generated by the sale of offsets support the development of additional reductions.
Certified or certification – A process by which an independent agent verifies that the claims made by a product, service, etc. are valid. Many certification programs exist through which products meeting independent standards may use a label or logo to indicate their claims have been verified.

Climate neutrality – All human activities produce carbon dioxide emissions or equivalents. When an activity reduces these emissions to a minimum and offsets the remainder, the activity is said to be carbon neutral.

Consent (prior, informed consent) – “Indigenous peoples have the right to determine and develop priorities and strategies for the development or use of their lands, territories and other resources, including the right to require that States obtain their free and informed consent prior to the approval of any project affecting their lands, territories and other resources, particularly in connection with the development, utilization or exploitation of mineral, water or other resources. Pursuant to agreement with the indigenous peoples concerned, just and fair compensation shall be provided for any such activities and measures taken to mitigate adverse environmental, economic, social, cultural or spiritual impact.” United Nations Declaration on the Rights of Indigenous Peoples (1993) [link]

Cultural heritage – “Is an expression of the ways of living developed by a community and passed on from generation to generation, including customs, practices, places, objects, artistic expression and values. Cultural Heritage is often expressed as either Intangible or Tangible Cultural Heritage.” ICOMOS International Cultural Tourism Charter, [link]

Cultural heritage requirements – legal or zoning regulations designed to protect and conserve cultural heritage.

Culturally sensitive site – According to the ICOMOS International Cultural Tourism Charter, [link], “Culture can be defined as the whole complex of distinctive spiritual, material, intellectual and emotional features that characterize a community, society or social group. It includes not only arts and literature, but also modes of life, the fundamental rights of the human being, value systems, traditions and beliefs. Culture encompasses the living or contemporary characteristics and values of a community as well as those that have survived from the past.” Sensitive sites are those places where living culture or cultural heritage (including historical, sacred, and archeological sites) can easily be damaged by tourism.

Cumulative effects – "Those effects on the environment that result from the incremental effect of the action when added to past, present and reasonably foreseeable future actions regardless of what [entity] or person undertakes such other actions. Cumulative effects can result from individually minor but collectively significant actions taking place over a period of time" (FEMAT,
Destination – "A local tourism destination is a physical space in which a visitor spends at least one overnight. It includes tourism products such as support services and attractions, and tourism resources within one day's return travel time. It has physical and administrative boundaries defining its management, and images and perceptions defining its market competitiveness. Local destinations incorporate various stakeholders often including a host community, and can nest and network to form larger destinations." World Tourism Organization, 2004.

Energy-efficient – Producing a high level of output or performance relative to the amount of energy consumed.

Environmentally-friendly – A loose term often used in marketing to inform consumers about an attribute of a product or service that has an environmental benefit. This term does not necessarily indicate all attributes of a product or service is environmentally benign.

Global Sustainable Tourism Criteria (GSTC) – A set of criteria applicable worldwide to hotels and tour operators that determine whether or not the business approaches sustainability (www.sustainabletourismcriteria.org).

Goals – In a sustainability management system, goals are the concrete results that a business expects to achieve and that are in accordance with the sustainability policy.

Gray water – Effluent from laundries and all other waste water sources other than toilets.

Greenhouse gases – Atmospheric gases that contribute to the greenhouse effect and sustain life on earth. Increasing concentrations of greenhouse gases in the atmosphere are altering the habitat humans evolved to thrive in; this is a process called global warming or climate change. Greenhouse gases include – carbon dioxide (CO₂), water vapor, nitrous oxide, ozone, methane (CH₄), and chlorofluorocarbons (CFCs). Carbon dioxide is principally emitted by tourism businesses by burning fossil fuels (such as gasoline or diesel) for heating and transportation, as well as using electricity produced by fossil fuels.

Impact assessment – "A process aimed at structuring and supporting the development of policies. It identifies and assesses the problem at stake and the objectives pursued. It identifies the main options for achieving the
objective and analyses their likely impacts in the economic, environmental and social fields. It outlines advantages and disadvantages of each option and examines possible synergies and trade-offs

Indigenous community – “Tribal peoples in independent countries whose social, cultural and economic conditions distinguish them from other sections of the national community, and whose status is regulated wholly or partially by their own customs or traditions or by special laws or regulations” with common interests and living in a particular area. *ILO Convention 169*, www.ilo.org/ilolex/cgi-lex/convde.pl?C169.

Infrastructure – Community public institutions and physical plant (roads, aqueducts, sewage treatment, etc.).

Internal rate of return (IRR) – “The rate of return produced by each dollar for the amount of time that dollar is in the investment... The internal rate of return (IRR) is a capital budgeting metric used by firms to decide whether they should make investments. It is an indicator of the efficiency or quality of an investment, as opposed to net present value (NPV), which indicates value or magnitude.” http://en.wikipedia.org/wiki/Internal_rate_of_return.

Invasive species – Plants, animals, or other living organisms that are not native to an area and are likely to expand uncontrollably into natural areas.

Kilojoule – 1000 kilojoules = 0.28 Kilowatt-hours. Both are measures of energy and can be used to calculate energy consumption of a hotel or tour operator, considering consumption of electricity, fossil fuels, and firewood.

LEED (Leadership in Energy and Environmental Design) – A “Green Building Rating System”, developed by the U.S. Green Building Council (USGBC), provides a suite of standards for environmentally sustainable construction. “LEED is a third-party certification program and the nationally accepted benchmark for the design, construction and operation of high performance green buildings. LEED gives building owners and operators the tools they need to have an immediate and measurable impact on their buildings’ performance. LEED promotes a whole-building approach to sustainability by recognizing performance in five key areas of human and environmental health: sustainable site development, water savings, energy efficiency, materials selection and indoor environmental quality.” www.usgbc.org/DisplayPage.aspx?CMSPageID=222.

Local – “Local” will vary depending on the site. It usually is considered to be the immediate area around the project’s site, but in very remote areas, there may be no local population.

Local community – Those people living in the immediate area potentially affected socially, economically, or environmentally by a tourism project.

Local minorities – Residents of local communities who belong to an ethnic group that is a minority in the country and has a lower standard of living than the general population.
Methane – CH₄, a potent greenhouse gas, 22-24 times more powerful than carbon dioxide. It is produced in tourist operations by decomposition of food wastes and sewage treatment.

Native species – Plants, animals, or other living organisms that are found as part of local natural ecosystems.

Passive design – “Design that does not require mechanical heating or cooling. Homes that are passively designed take advantage of natural climate to maintain thermal comfort.” www.yourhome.gov.au/technical/fs41.html.

Protected wildlife species – Plants, animals, or other organisms whose populations are seriously reduced and which are given special consideration for their conservation by laws, regulations, or international agreements.

Renewable energy – “Energy generated from natural resources—such as sunlight, wind, rain, tides and geothermal heat—which are renewable (naturally replenished).” http://en.wikipedia.org/wiki/Renewable_energy.

Runoff – “Surface runoff is the water flow which occurs when soil is infiltrated to full capacity and excess water, from rain, snowmelt, or other sources flows over the land…Urbanization increases surface runoff, by creating more impervious surfaces, such as pavement and buildings, that do not allow percolation of the water down through the soil to the aquifer. It is instead forced directly into streams or storm water runoff drains, where erosion and siltation can be major problems, even when flooding is not. Increased runoff reduces groundwater recharge, thus lowering the water table and making droughts worse, especially for farmers and others who depend on water wells. When anthropogenic contaminants are dissolved or suspended in runoff, the human impact is expanded to create water pollution. This pollutant load can reach various receiving waters such as streams, rivers, lakes, estuaries and oceans with resultant water chemistry changes to these water systems and their related ecosystems.” http://en.wikipedia.org/wiki/Surface_runoff.

Second homes – Residences sold to people who do reside elsewhere and expect to use the buildings only part of the time. Second homes near hotels are frequently rented for short periods of time, offered for time-sharing, or added to the room pool of the hotel.

Sociocultural – “Of, relating to, or involving a combination of social and cultural factors” http://dev.m-w.com/medical/sociocultural.

Solid-waste management plan – A strategy to reduce the quantity of solid waste that is delivered to landfills, by reducing the sources of waste and reusing or recycling as much as possible of the remainder. As a management plan, it should have concrete goals and objectives, as well as performance indicators.

Sustainability – Use of resources, in an environmentally responsible, socially fair and economically viable manner, so that by meeting current usage needs, the possibility of its use by future generations is not compromised. [PCTS].
Sustainability management system (SMS) – Management system (set of interrelated or interacting elements) to establish a sustainability policy and sustainability objectives and to achieve those objectives [ISO]. Management system to direct and control an enterprise on what refers to sustainability [PCTS].

Sustainability policy – The overall intentions and direction of an organization related to sustainability as formally expressed by top management.

Sustainable design – A term now in common use in architecture and refers to design that reduces energy and water consumption, uses environmentally innocuous materials, and is in harmony (esthetic, environmental, and cultural) with the surroundings.

Sustainable products – Services or goods that are developed using good environmental and social practices and which have minimal negative impacts compared with other similar services or goods.

Sustainable tourism – “Tourism that is economically viable, but does not destroy the resources on which the future of tourism will depend, notably the physical environment, and the social fabric of the host community.” (Swarbrooke, J. 1999 Sustainable Tourism Management. Oxon: CAB International, p.13).

Sustainable use of wildlife – “Sustainable use is a rate of harvest within the capacity of species and their habitats to maintain themselves. Sustainable use can be non-consumptive or consumptive. Wildlife is used to encompass undomesticated marine and terrestrial native plants and animals, including invertebrates, fungi and protozoans. It includes populations of species that are regularly harvested from the natural environments as an economic resource. It does not include populations of native species that are farmed in isolation from their natural habitats.” Position Statement by The Ecological Society of Australia on the Sustainable and Commercial Use of Wildlife, http://www.ecolsoc.org.au/Position_papers/documents/SustainableCommercialUseofWildlife.pdf.

True market value – The price that a property or building would likely obtain in a public sale.

Upflow anaerobic filter (UAF) – A sealed tank with a filter material, such as gravel, that serves as a substrate for anaerobic bacteria that digest organic matter. It can be used to filter the output from a septic tank where the soil is unsuitable for a standard drain-field.

Upflow Anaerobic Sludge Blanket Reactor [UASB] – “Anaerobic granular sludge bed technology refers to a special kind of reactor concept for the "high rate" anaerobic treatment of wastewater. The concept was initiated with upward-flow anaerobic sludge blanket (UASB) reactor. From a hardware perspective, a UASB reactor is at first appearance nothing more than an empty tank (thus an extremely simple and inexpensive design). Wastewater is distributed into the tank at appropriately spaced inlets. The wastewater
passes upwards through an anaerobic sludge bed where the microorganisms in the sludge come into contact with wastewater-substrates. The sludge bed is composed of microorganisms that naturally form granules (pellets) of 0.5 to 2 mm diameter that have a high sedimentation velocity and thus resist wash-out from the system even at high hydraulic loads. The resulting anaerobic degradation process typically is responsible for the production of gas (e.g. biogas containing CH₄ and CO₂). The upward motion of released gas bubbles causes hydraulic turbulence that provides reactor mixing without any mechanical parts. At the top of the reactor, the water phase is separated from sludge solids and gas in a three-phase separator (also known the gas-liquid-solids separator). The three-phase-separator is commonly a gas cap with a settler situated above it. Below the opening of the gas cap, baffles are used to deflect gas to the gas-cap opening.”

Visitor carrying capacity – “The maximum number of people that may visit a tourist destination at the same time, without causing destruction of the physical, economic, socio-cultural environment and an unacceptable decrease in the quality of visitors' satisfaction.” United Nations World Tourism Organization (UNWTO, 1981). There are many different mechanisms for evaluating this, such as Limits of Acceptable Change (LAC) and Visitor Impact Management (VIM), among others. No mechanism has received general acceptance, but one or another may be suitable to given conditions.
REFERENCES

Audubon Cooperative Sanctuary Program for Golf Courses (ACSP); www.auduboninternational.org/programs/acss/.

Audubon Signature Programs; www.auduboninternational.org/programs/signature/.

Báez, Ana L. y Acuña, Alejandrina; 1998; “Guía para las mejores prácticas de ecoturismo en las áreas protegidas de Centroamérica”, PROARCA-CAPAS y CCAD.

Biosphere Golf; www.biospherehotels.org.

Consultancy and Research for Environmental Management (CREM); 2000; “Feasibility and market study for a European Eco-label for tourist accommodations (FEMATOUR)”; European Commission.

International Hotels Environmental Initiative (IHEI); Water efficiency benchmarks.

International Organization for Standardization, ISO 14064-1, 2, or 3 "Greenhouse gases: Specification with guidance (1) at the organization level for quantification and reporting of greenhouse gas emissions and removals, (2) at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancement, and (3) for the validation and verification of greenhouse gas assertions".

Moncayo R., Gabriel; 2007; “Estudio para el aprovechamiento de biomasa por parte de empresas industriales y turísticas de Republica Dominicana”; www.aqualimpia.com; aqua@aqualimpia.com.

Parr, Jeremy; Michael Smith and Rod Shaw; “Wastewater treatment options”; Water and Environmental Health at London and Loughborough (WELL), www.lboro.ac.uk/well.

Rainforest Alliance; 2008; database comparing the Global Sustainable Tourism Criteria with 61 certification standards and 16 international guidelines for sustainable tourism; unpublished.

Sistema de Integración Centroamericana (SICA); “Código de Conducta Para la Protección de Niños, Niñas y Adolescentes contra la Explotación Sexual Comercial en el Turismo”.

33

Water Pollution Control Federation (WPCF); 1990; “Natural Systems for Wastewater Treatment: Manual of Practices”.
